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The DNA sequence of the human genome has been determined.
This significant scientific milestone has been a multidisciplinary ef-
fort sponsored by both public and private investments. Engineering
and computer science contributions have been essential to success,
especially with the accelerated schedules of the Human Genome
Project. A tutorial summary of the biological and health implica-
tions of sequencing the human genome is presented together with
examples of how genome data from human and other organisms are
already used. Engineering contributions to sequencing are identi-
fied as well as predictions of how engineering methods may con-
tribute to the “postsequencing” era of biology.
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I. INTRODUCTION

It has been 135 years since Gregor Mendel observed that
several distinct traits of peas were inherited at statistical rates
predicted by the traits of the parents [1]–[3]. More recently,
we have learned that deoxyribonucleic acid (DNA) contains
the biochemical codes for the inheritance that Mendel
observed. The DNA that is associated with a specific trait or
function is known as a gene. The entire set of information
represented in the DNA is known as the genome. This com-
bines the word “gene” with the suffix “ome” for mass. In
humans, our DNA is packaged in 23 pairs of chromosomes.
Each parent contributes one chromosome to each pair in
the genome. The chromosomes are designated by X, Y, and
the numbers 1–22. In normal cells, there are two copies of
the numbered chromosomes. The X and Y chromosomes
determine sex with the pairs X-to-X and X-to-Y resulting
in female and male children, respectively. Therefore, the
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chromosomes determine gender as well as many other traits.
Deviations of DNA from “normal” are known as mutations
and may be inherited and/or derived from interactions with
the environment. Some mutations impact health. As an
example, in the 1960s it was determined that the presence
of an extra chromosome 21 causes Down syndrome. Curi-
ously, Dr. Langdon Down first described this syndrome in
1866—the same year as Mendel’s famous observation [4].

Mendel observed many inherited traits of peas. It was not
until 1944 [5] that inherited genes and DNA were linked. It
is very important to note that the DNA is responsible for far
more than passing static information from parents to chil-
dren regarding inherited traits. The DNA has a significant
role in the biochemical dynamics of every cell. The DNA
contains the parts list and assembly instructions for cell activ-
ities including metabolism, growth, and reproduction. Every
cell in a human has the same DNA sequence in its chro-
mosomes. Even cells with very different structure and func-
tion, like brain cells and liver cells, have the same DNA
sequence. Developmental processes differentiate the cells,
changing which genes are on and which are off. For bac-
teria that cause human disease, a few different genes in the
bacterial DNA can determine if the organisms cause sick-
ness rather than death. The dry mass of a typical cell is less
than 5% DNA. However, the DNA controls the production
of proteins that make up 75% of the dry mass. The informa-
tion contained in the DNA influences when and how cells
respond to environmental conditions through the production
of proteins. DNA stores the “parts list” for protein structure
and function, and it dynamically interacts with proteins to
regulate the timing and amount of their production. There-
fore, DNA is a logical place to begin decoding how cellular
function works at the molecular level.

The program to determine the information in the human
genome was begun in 1986 [6]. As recently as 1998, com-
pletion was planned for 2003 [7]. Based on significant tech-
nological improvements and increased public and private in-
vestments, the sequence of the human genome has been de-
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termined this year [8], [9]! These data provide the frame-
work for revolutionary new biology, medicine, and human
health and is available on the World Wide Web [10]. The ac-
complishment is a tribute to significant innovation in the life
and physical sciences, engineering, and computing. In this
paper, we summarize the significance of DNA sequence in-
formation, the need for additional data to increase our un-
derstanding of living systems, and the role of electrical and
computer engineering in achieving these goals. We also ex-
amine the potential for engineering methods including simu-
lation to integrate the current and emerging vast data sets so
that our understanding of living systems can improve and we
can apply the knowledge.

II. DNA SEQUENCEINFORMATION

DNA is a macromolecule built from repeating subunits
[11], [12]. The subunits are comprised of a nitrogenous base,
a sugar, and a phosphate group generically denoted dNTP
for deoxyribonucleotide triphosphate. The nitrogenous
base is one of adenine (A), cytosine (C), guanine (G), or
thymine (T) with the associated deoxynucleotides denoted
dATP, dCTP, dGTP, and dTTP. The dNTPs can be joined
along a sugar-phosphate backbone to form a single strand
of DNA with the bases occurring in any order. The dNTPs
and the strand have an orientation based on the orientation
of the carbon atoms in the sugar. One end of the strand is
designated five prime and the other three prime, 5and 3,
respectively. The list of bases in a strand of DNA is known
as the DNA sequence and might appear as “5-CGCGCTC-
CCTGAACC-3.” Single-stranded DNA is somewhat fragile
and DNA usually occurs as a double strand with each ni-
trogenous base hydrogen bonding to a complementary base
on the opposite strand. The base pairs in double-stranded
DNA must occur as A-to-T or C-to-G. The strands are also
antiparallel—e.g., “3-GCGCGAGGGACTTGG-5,” for
the earlier example. The two strands tend to twist into the
familiar double helix shape associated with DNA shown in
Fig. 1. In humans, each DNA molecule folds among various
proteins into a compact package called a chromosome.

Genes produce messages like packets on an electronic net-
work. The messages, called message (or messenger) RNA
or mRNA, direct operations at network devices known as ri-
bosomes. The ribosomes translate mRNA information into
proteins (see Fig. 2). There is noncoding DNA called introns
between genes that can be thought of as noise sources or un-
known signals or messages that are no longer used. Some
genes code for regulatory proteins that can inhibit the ability
of other genes to put information on the “network.” This may
be accomplished by binding to the region of DNA that is
needed to describe the protein and preventing messages from
originating there. Regulatory proteins blocking the transla-
tion of specific gene messages at the ribosomes can also in-
hibit genes. And, proteins can be produced that bind to other
proteins to inhibit or enhance function. These are only a few
of the mechanisms to inhibit functional protein production
that exist in cells. Regulatory proteins can also promote pro-
tein production by biochemically removing inhibitory pro-

(a) (b)

Fig. 1. Two strands of DNA in the familiar double helix or
twisted-ladder shape with a sugar-phosphate support backbone
and nitrogenous base rungs. “Licorice and ribbons” (a) and
space-filled (b) views of the Drew–Dickerson dodecamer, the
first high-resolution measured crystal structure of B-DNA [13].
B-DNA is the dominant form of DNA under physiological
conditions. Courtesy of D. Barsky, LLNL, using the VMD program
(Humphrey) and with Rayshade 4.0 (Kolb and Bogart) and Raster3D
(Merritt and Bacon).

teins from DNA and making the gene available to the “net-
work.” Spatial organization within the cell can play a reg-
ulatory role as well, since mRNA and protein have to be
transported to different locations in the cell to execute their
functions. The inhibitors and promoters compete and com-
plement each other in a complex feedback system that regu-
lates protein production.

Proteins are strings of amino acids assembled on a ribo-
some in an order specified by the DNA sequence from the as-
sociated gene. The DNA sequence information originates on
chromosomes in the cell nucleus and is transmitted to the ri-
bosome via single-stranded ribonucleic acid (mRNA). Three
consecutive bases, known as a codon, specify which of the 20
amino acids in a cell is to be used next in the assembly of the
amino acid chain. As shown in Table 1, there are 64 (4 cubed)
possible codons that redundantly code for the 20 amino acids.
Note that in RNA, thymine is replaced with the base uracil,
i.e., T’s in DNA becomes U’s in RNA. RNA complements
a template of single-stranded DNA with base pairs U-to-A,
A-to-T, G-to-C, and C-to-G.

Deviations of genes from “normal” can be from inheri-
tance and/or from exposure to environmental factors. For ex-
ample, sickle-cell anemia is caused by a change in a single
base of the DNA in an otherwise normal gene. Although it
is just one base, the change causes a substitution of a single
amino acid (valine for glutamine) in the protein that the gene
encodes. The mutation results in abnormally shaped fragile
red blood cells or “sickle cells.” It is important to note that
in many cases, changing only one base does not necessarily
change the amino acid sequence of a protein, and changing
one amino acid in a protein does not necessarily affect its
structure or function.

In summary, the information stored in the DNA sequence
of a gene is transcribed into a message of single-stranded
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Fig. 2. Cells are organized and structured like an electronic network. Cells are not simply containers
for biochemical reactions. Genes produce mRNA messages like packets on an electronic network. The
messages direct operations at network devices known as ribosomes where information in the message
is translated into proteins. Regulatory proteins known as inhibitors and promoters can modify message
and protein production. The function of proteins and other molecules can change as interactions in the
cell form complex macromolecules or degrade existing molecules.

RNA with complementary bases. The message RNA
(mRNA) moves from the nucleus to the cytoplasm. On a
ribosome in the cytoplasm, the mRNA is translated one
codon (three bases) at a time into a code for one of 20
amino acids. The amino acids designated by the codons are
chained together until a full-length protein is formed (see
Fig. 3). Proteins are the workhorses of the cell. DNA and
the environment control the quantity, timing, and selection
of proteins expressed. As summarized in Fig. 4, producing
proteins from the information stored in the chromosomes is
mediated by a network system that includes feedback from
biochemical inhibitors and promoters. This schematic is
incomplete and we will add details later. The first step in
providing a comprehensive understanding of this complex
network is to obtain the entire human DNA sequence.

III. DNA SEQUENCING

DNA sequencing has become a high-throughput process
for determining the ordered base pairs in a strand of DNA.
Manufacturing techniques, including statistical process con-
trol, are now routine. An example throughput metric is the
number of DNA bases sequenced per day per dollar. Some se-
quencing centers report daily and monthly production online
[14]–[16]. In most DNA sequencing approaches, the DNA
sequence is assembled from many shorter, overlapping sub-
sequences. The sequence of a strand less than a couple thou-
sand base pairs in length is measured using four-color elec-
trophoresis. Our description of DNA sequencing begins with

a simplified description of sequencing chemistry followed
by discussions of electrophoresis, computerized base calling
and assembly, and concludes with an overview of automation
used to increase throughput and reduce cost. Submission of
the sequence into the public DNA sequence database is the
final step for most publicly funded sequencing projects.

Beginning withapurified templateof singlestrandedDNA,
the second complementary strand is generated using an en-
zymeknownasDNApolymerase.Deoxynucleotides(dNTPs)
for each of the bases are provided in solution so that the poly-
merase enzyme can assemble them along the template. First, a
small chain of dNTPs, called a primer, is annealed to the tem-
plate DNA. The primer is designed to be at a unique refer-
ence position on the template. Assembly of the complemen-
tary strand begins at the primer site and continues toward the
five-prime (5) end of the template. As each dNTP is added, a
3 -hydroxyl group is left available for the next dNTP in the
growing complementary second strand. The clever modifi-
cation of a dNTP so that no 3-hydroxyl group is available
for chain extension provides a means to terminate strand as-
sembly. These synthesized molecules, known as dideoxynu-
cleotidesorddNTPs,canalsobelabeledwithafluorescentdye
specific to the base. By balancing the concentration of dNTPs
and ddNTPs, an ensemble of DNA strands beginning at the
same position on the template DNA but of different lengths
can be generated. These strands are also terminated with a
fluorescent label specific to the final base in the chain. The
two strands are separated using temperature and/or biochem-
ical techniques. Once the “chain termination” or “Sanger se-
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Table 1
The 64 3-Base Codons (5to 3 DNA) With the Corresponding Message RNA (5to 3 mRNA) and
the 20 Amino Acids. The Single Letter Abbreviations are Only Used in Long Lists. Note that the DNA
Corresponds to the 5to 3 Gene and so the mRNA Bases are Identical with the T to U Substitution. The
mRNA is the Complement of the 3to 5 DNA Strand that Participates in mRNA Transcription. Several
Codons May Also Serve to Designate the Start (ATG) or Stop (TAA, TAG, TGA) of a Gene-Coding
Region

quencing” chemistry [17] has been completed, the DNA se-
quence can be obtained by ordering the new strands by size
and fluorescent label (see Fig. 5).

One popular alternative to dye terminator chemistry uses
fluorescent labels at the primer site and is known as the dye
primer method. The template DNA is separated into four
aliquots and a fluorescent label is incorporated as part of
the primer. Chain extension using dNTPs is performed as
described above. However, chain termination differs in that
ddNTPs for only a single base are used in each aliquot and the
ddNTPs are not labeled. After chain extension and termina-
tion in the dye primer method each aliquot has fragments la-
beled at the primer site and terminated at the same base. The
DNA sequence can be obtained by ordering the new strands
by size in each aliquot separately and then computationally
combining the results from the four aliquots. If a different
color primer label is used in each of the four aliquots, the
aliquots can be pooled before DNA sizing and the process
continues as with dye terminator chemistry. One of the prin-
cipal advantages of dye terminator chemistry is the ability to
do the chain extension in a single aliquot.

The method of choice for determining the size of the
DNA strands is four-color electrophoresis [18]–[22]. Elec-
trophoresis to separate biomolecules began with the Nobel
Prize winning work by Tiselius on proteins in 1937. In DNA
sequencing, electrophoresis uses the force from an applied
electric field to move the negatively charged single-stranded
DNA molecules through a separation medium. DNA has
roughly a constant charge to mass ratio. The sieving
medium and the electric field are engineered to produce
differential drift velocities proportional to the length of the
DNA usually for DNA less than one thousand bases long.
Limitations arising from diffusion and convection led to the
use of polyacrylamide or agarose sieving media in many
instruments [23], [24]. High-throughput instruments have
utilized several approaches including gels spread thinly
across slabs of glass and gels injected into glass capil-
lary arrays, glass microchannels and plastic microarrays
[25]–[36]. Each of these types of instruments is in use today
with instruments using arrays of glass capillaries currently
dominating sequencing in the large centers. We describe
the electrophoresis process with a bias toward the capillary
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Fig. 3. Proteins are chains of amino acids assembled in an order specified by the sequence of DNA
bases located in chromosomes in the cell nucleus. Single stranded RNA molecules are the messages that
move from the nucleus to the ribosomes. The ribosomes assemble proteins by matching three-base sets
(codons) in message RNA with complementary codons on transfer RNA (tRNA) attached to individual
amino acids [6].

Fig. 4. Schematic showing the transcription of information from
genes (DNA) to message (RNA) and the translation of mRNA to
proteins. The environment and the DNA change the scheduling of
protein production through a complex feedback network.

systems. Fig. 6 provides a generic capillary electrophoresis
DNA sequencing instrument schematic.

Before DNA can be loaded into an electrophoresis in-
strument, gel is pumped from the data collection end of the
system into the capillaries using a syringe-type pump or
compressed gas at over 1000 psi. Usually several capillary-
volumes are pumped through the system. The excess gel is
aspirated from the sample-end of the capillaries. The loading
well around each capillary entrance is then filled with a
buffer solution. The sample (usually a few microliters) is
introduced into the loading buffer. The goal in DNA loading
is to create a thin stack of DNA in the gel [37]. If the stack

spreads out before electrophoresis, the resolution of the
system degrades and fewer DNA bases can be deduced
from the run. In electrokinetic injection, an electric field
(anode at the detection end of the system) is applied and the
negatively charged DNA in the sample is moved into the gel
in the capillary. The loading buffer is then aspirated out of
the system and a running buffer is introduced to promote
migration of the DNA down the capillary. Commercially
available sequencing instruments now require very little
operator intervention. In one of the commercial systems,
the Applied Biosystems 3700 DNA Analyzer [38], a robotic
arm performs sample loading and some of the aspiration
operations [39]. The input sources for all high-throughput
commercial systems are standard laboratory 96 or 384 well
plastic microtiter plates.

An innovative alternative to injecting the sample into
the gel electrically is to create a narrow cross channel (see
Fig. 7) that moves DNA across the gel in the sequencing
channel [40]. After loading, the stack of DNA in the channel
is roughly the width of the cross channel. After isolating
the cross channel electrically, electrophoresis begins in the
sequencing channel. Although electric fields have been used

FITCH AND SOKHANSANJ: GENOMIC ENGINEERING 1953



Fig. 5. DNA sequencing using four-color electrophoresis and the Sanger chain termination chemistry.
A template of DNA is copied into many random length pieces of DNA that start at the same primer
and terminate with an optical label specific to the last base in the chain. The strands are separated by
length using electrophoresis allowing the DNA base sequence to be deduced.

Fig. 6. Capillary-based electrophoretic DNA sequencing
instrument with Laser Induced Fluorescence (LIF) detection
system.

to move the DNA for this loading scheme, the geometry
has mechanically isolated the DNA for electrophoresis.
The cross-channel loading has been implemented in several
systems using micro electro mechanical systems (MEMS)

Fig. 7. Cross-channel loading for microchannel electrophoresis.

techniques including lithographic patterning of the channel
and cross-channel. For a recent review of MEMS applied
to genetic diagnostics including cross-channel loading,
see [34]. Compared to electrokinetic sample loading,
cross-channel loading requires additional electrical circuitry.
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The voltage and current must be controlled in both the
main and the crossing channels to minimize diffusion of the
sample into the gel. Although it has had several promising
demonstrations, it is currently not available in any commer-
cial system.

Once the DNA sample is loaded into the gel in the capil-
lary, an electric field of 100–200 V/cm is applied to move
the DNA through the gel toward the detector. The shorter
fragments and surplus primer from the enzymatic reaction
arrive first at the detector. Surplus template DNA without at-
tached fluorescent labels can contaminate a run by arriving
at the detector at the same time as shorter DNA fragments
that have an attached label that slows migration. It is also
possible for the single-stranded DNA to fold on itself and
cause poor electrophoretic separations. As with aliasing in
an analog to digital sampling system, it is not possible to de-
termine from the electrophoresis data alone if a peak is due
to a short fragment or a longer fragment that has folded on
itself and migrates faster than it would without the fold. To
reduce some of these noise sources, the samples are often pu-
rified before loading, the gel and buffer chemistries are en-
gineered to keep single-stranded DNA from hybridizing to
complementary DNA strands, and the temperature and run-
ning conditions are optimized for electrophoretic resolution.
As an example, the Applied Biosystems 3700 DNA Analyzer
often loads 2 l from a 25- l source in microtiter format
with a 30-s electrokinetic load at 1 kV. This represents ap-
proximately 20 ng of DNA loaded onto the column. The run
voltage is often 6.5 kV. The 50-cm long and 50-m inner di-
ameter capillaries are filled with a polydimethylacrylamide
(PDMA) sieving gel. The run duration is about 2 h for 500
bases with single base resolution [38], [39].

A standard measure of resolution of DNA sequence is the
ratio of the peak width to the peak spacing. The peak width
is usually taken as the full width at half the maximum value.
The number of bases where this resolution is unity is known
as the crossover point for the system (loosely similar to the
Rayleigh diffraction limit of an optical system). Signal-to-
noise ratio and other parameters influence performance, but
the crossover point is a good measure of the inherent capa-
bility of an instrument to resolve DNA fragments differing in
length by one base. When the DNA fragments are resolvable,
the fluorescent labels on the terminating ddNTP will desig-
nate the last base on the fragment of interest and there will
be many copies of that label (one for each DNA fragment)
allowing for optical detection. For most of the commercially
available ddNTP labels, an Argon ion laser (488- and 514-nm
wavelengths) induced fluorescence (LIF) system is used for
detection. The optics of the two most common detection sys-
tems are a scanning confocal microscope with photomulti-
plier tubes [41] and a fixed CCD imaging system that collects
multiple wavelengths simultaneously through a prism [42].
The detection system can operate through the glass capillary
or through a liquid that creates a “sheath flow” around the end
of the capillary [43]. Although mechanically complex, the
sheath flow eliminates refraction through the capillaries and
allows the laser to illuminate many channels simultaneously
without scanning. Numerous other detection methods have

been proposed including electrochemical [44], [45], but they
have not been adopted in commercially available sequencers.

The fluorescent labels used in most DNA sequencing
instruments have emission spectra that overlap. Example
spectra are presented in Fig. 8. Color correction is needed
before beginning data analysis to detect DNA bases. Other
characteristics of the electrophoretic separation that must be
corrected include length-dependent changes in velocity of
the DNA fragments and velocity differences due to the four
different fluorescent labels. For a fixed detector system, the
DNA that arrives later appears to have a broader distribution.
This is due to the slower velocity and not necessarily a
more spatially dispersed ensemble of DNA fragments.
Corrections for the velocity dependent artifacts are referred
to collectively as mobility correction [18]. In general, there
are two approaches for color and mobility correction. The
first approach is system calibration with known samples
using the same loading and running parameters as will be
used with the unknown samples [46]. The second approach
is system compensation by estimating the parameters of a
correction model dynamically from the data [47]. Because of
the high-throughput nature of DNA sequencing, the system
parameters remain fixed for many runs making the first
approach (the use of calibrated test runs) preferred. Ideally
the traces from each of the DNA fragments would have the
same shape, samples would be evenly distributed by size
in the electropherogram, and the fluorescent labels would
not overlap spectrally. Unfortunately, the electropherogram
has many distortions, and the signal environment is similar
to a digital communication system with fading channels
and crosstalk. When the biochemistry or temperature is
suboptimal, the folding of the single strand of DNA can also
change the electropherogram as if the signal had multipath
artifacts.

Fig. 9 shows an electropherogram before and after color
correction, background subtraction, and filtering for mobility
and shape correction [48]. The ultimate metric to compare
against is not the homogeneity of the electropherogram, but
rather the accuracy of the assignment of DNA bases. This
process is known as base calling and the state of the art has
been defined by the early work in industry for supporting
the ABI 373 sequencing instrument and more recently by
Phil Green’s group with codes named Phred and Phrap [49],
[50]. The Phred and Phrap codes are arguably the gold stan-
dards for base calling, assessing the quality of a base call
and assembling sequence data from many DNA fragments
into an estimate of a longer contiguous DNA sequence. The
code performs all of the necessary filtering mentioned above,
does peak tracking to identify potential locations of bases in
the electropherogram, and then performs a model fit to call a
base and to look up a probability of error in a calibrated table
for the particular instrument. “Phred 20 bases” has become
the industry standard for identifying the number of bases that
have roughly a 1 in 10 000 probability of error.

Electrophoresis allows determination of the sequence of
the template DNA of lengths of around 1000 bases. So how
are entire genomes with over a billion bases sequenced? The
sequence of longer segments of DNA is assembled from
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Fig. 8. Example spectra for four-color fluorescent DNA labels and the optical transmission
characteristics of the LLNL microchannel DNA sequencer. The dichroic mirrors are designated xxxD,
where xxx is the cutoff wavelength in nm. The optical bandpass filters are designated Dxxx/xx, where
xxx is the center wavelength and xx is the bandwidth in nm. The fluorescent terminator labels were
sold under the trademark PE Big Dye.

Fig. 9. Electropherograms before and after the color correction step. The sample spacing is roughly
1 s. Note that the width of the peaks and peak-to-peak spacings are not uniform.

many overlapping shorter sections of DNA. The average
number of times each base appears in a different DNA

fragment is called coverage. Sequencing projects range
from “draft” quality with 3–5 coverage to “finished”
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quality with order 10 coverage and on average less than
one incorrect base call per 10 000. The overlapping, but not
identical, DNA fragments are the initial input for the se-
quencing chemistry. These fragments are usually generated
mechanically or biochemically. In the mechanical approach,
a purified source of DNA is sheared or fragmented into
many random-length subsequences, often by forcing the
DNA through a pore. In the biochemical approach, multiple
restriction enzymes that digest DNA at fixed sites are used
to generate different fragments depending on the order the
enzymes are applied. In the public sequencing project, both
techniques have been used.

There are two different strategies on how to get 1000-base
template DNA from multimegabase chromosomes. In the
mapping approach, mechanical shearing is used on the
chromosomes with fragments selected to be around 150 000
base pairs. The fragments are coarsely assembled into a
rough map that identifies the location of the particular DNA
fragment on the chromosome. Sometimes it is necessary to
“end-sequence” these large fragments to facilitate assem-
bling the map. The size of the fragment and the limited
sequence information are used to identify a tiling pattern
that covers the section of interest on the chromosome. Once
the 150 kbase clones are mapped, the selected clones in
the tiling pattern are fragmented randomly into DNA short
enough (less than two kbases and known as subclones) to use
as templates for electrophoretic sequencing. In sequencing
smaller genomes, like microbes [51], and in the PE/Celera
“shotgun” approach to human genome sequencing [52],
the mapping step is skipped and the whole genome is
fragmented. Eliminating mapping saves time and effort
but assembly of the significantly larger number of DNA
fragments is more difficult.

Automation has been applied to many steps of the DNA
sequencing process. Parallel aspiration out of and dispensing
into microtiter format plates with 96, 384, or 1536 wells al-
lows a large number of samples to be processed simultane-
ously. The plastic plates have been standardized at 12.8 by
8.6 cm. The plates are available in different depths to help
accommodate volume and surface area effects on the bio-
chemistry. As the number of wells increases in each plate, the
reduced cross section of each well requires more and more
accuracy from the automation systems. A 384-well plate, for
example, has 4.5-mm center-to-center spacing of the wells.
Flexible tips are often used so that slight misalignments do
not damage the plates or the robots. DNA samples remain
in the plates for many operations including centrifugation,
thermal cycling, template purification, and sequencing reac-
tion setup allowing many DNA samples to be processed in
parallel. Only a few nanograms of DNA would be required
for DNA sequencing if it were possible to reliably make and
handle volumes that small.

With many molecular biology instruments now accommo-
dating microtiter format plates, tracking and moving plates
around the laboratory has become important to efficiency.
Plate shuttling is often accomplished with a conveyor belt
having stations along the track. Shuttling can also be done
with a robotic arm that picks and places plates on subsystems

around the arm. The first step in many DNA sequencing cen-
ters is the growing of many copies of bacteria with an inserted
piece of DNA on a flat culture plate. As the bacteria repli-
cates, many copies of the inserted DNA are made. “Picking”
robots can harvest bacterial plaques and colonies into mi-
crotiter plates. This requires sophisticated imaging systems
to identify the location of the bacteria to be harvested and
high-speed positioning systems that can direct the tip that
picks up the bacteria. In summary, automation has allowed
significant time and cost savings, reduced sample volumes,
improved protocol consistency, and allowed for more accu-
rate sample tracking [53], [54].

For most publicly funded projects, the final step for
sequence data is submission to the public database Gen-
Bank. GenBank is managed by the National Center for
Biotechnology Information (NCBI) at the National Library
of Medicine (NLM) of the National Institutes of Health
(NIH) [10]. There are a variety of ways to submit data. In
the end, a unique accession number is assigned to each
submission so that the data may be appropriately referenced.
High-throughput sequencing centers can also submit data at
different levels of completion. Finished sequence is known
as phase 3 status and draft data is either phase 0, 1, or 2
depending on the base call quality and the number of gaps
in the data [55].

It is instructive to work through a specific example of how
to access DNA sequence data. We selected as an example,
the inherited disorder known as myotonic dystrophy, which
is the most common form of muscular dystrophy that affects
adults [56]. Symptoms range in severity from male-pattern
baldness to lethal. The cause of myotonic dystrophy is a set
of CTG repeats that occur in the 3untranslated region of the
dystrophia myotonica (DM) protein kinase gene on the long
arm of chromosome 19 (19q13.2–19q13.3) [57]–[59]. The
CTG pattern repeats 5–20 times in the normal population.
Affected individuals have 50 to thousands of CTG repeats
and symptoms appear stronger with each affected generation.

We could find information about myotonic dystrophy in
the scientific literature and we could find it in the DNA se-
quence database. To use the sequence data itself, go to NCBI
online at http://www.ncbi.nlm.nih.gov/ and enter “dystrophia
myotonica” in the GenBank search window. A list of hyper-
links will be returned. Select the link for accession number
NM_004409 “Homo sapiens dystrophia myotonica protein
kinase (DMPK), mRNA.” If for some reason the search is
not working, the accession number should be able to link to
the same data. The information available at NM_004409 in-
cludes published information related to the gene, the source
(Homo sapiens, 19q13.3), a list of the 629 amino acids in
the expressed protein (MSAEVRLPGAARAP), a list of
the 3407 bases from the DNA sequence, the position in the
sequence that codes the protein (bases 777 to 2666), and
the location of the 3untranslated CTG repeat (begins at
base location 2890). The last seven amino acids in the pro-
tein and the associated DNA sequence are shown in Table 2.
Using a GenBank search is just one of many ways to find
and compare DNA and protein sequence information. As an
example of another approach, the Online Mendelian Inheri-
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Table 2
The Last Seven of 629 Amino Acids in the Dystrophia Myotonica Protein Kinase (DMPK) and the
Associated DNA Bases in the Gene. Both the Amino Acids and the DNA Sequence can be Verified
Online at NCBI

tance in Man or OMIM is also accessible through the NCBI
web site. This database links together significant scientific
information with the gene databases. A search for “myotonic
dystrophy” will provide significant detailed information on
many muscular disorders and is an excellent launching point
for reviewing the scientific literature.

The gene associated with myotonic dystrophy was
discovered as part of research being conducted on the
disease. In contrast, the location and function of genes is
largely unknown for the DNA sequence being submitted by
the large centers. Regions of the DNA that are amenable
to transcription are called open reading frames (ORFs).
ORF finding software has been developed [60] and can be
customized for a particular organism [61]. For instance, bac-
terial and human/mouse ORF finders usually use different
algorithms. Generic markers like start and stop codons may
often designate the beginning and end, respectively, of an
ORF. However, just looking for these codons is generally
not sufficient, and algorithm complexity has grown to
include techniques like hidden Markov models [62]. As the
DNA sequence for more organisms becomes available, the
accuracy of ORF finders can be evaluated and improved
[63]. A continuing opportunity exists to leverage algorithms
developed for other applications like speech recognition and
customize those techniques to ORF finding. Once the ORF
finding problem is addressed and genes are provisionally
located and identified, the next major step is to determine
the function of the genes.

IV. FROM GENES TOFUNCTION

The amount of DNA sequence data available is growing at
a significant rate. The DNA sequence of the human genome
and the genomes of many other organisms are completed
(see Table 3). With the raw sequencing power of the large
centers, it is now possible to draft sequence an entire bac-
terial genome in a single day. The availability of these data
is changing the approach to many biological research ques-
tions. Just as it was possible to take a whole-organism ap-
proach to DNA sequencing, it is now possible to consider a
whole-organism approach to getting at the mechanisms that
control the biochemistry in a cell and therefore the basis of
how to prevent or treat disease. High-throughput whole-or-
ganism approaches include genomics, proteomics, functional
genomics, and structural genomics for the study of genes,

proteins, gene function, and three-dimensional (3-D) pro-
tein structures, respectively. These approaches contrast with
and complement the hypothesis-driven, single isolated phe-
nomenon, research tradition in biology. The next generation
of hypothesis will address an entire complex activity like
metabolism, which requires information about multiple pro-
tein-DNA interactions of the cell’s regulatory mechanisms.
The rest of this paper presents approaches to collecting gene,
protein, and regulatory information. We conclude with a de-
scription of how computer modeling and simulation might
facilitate data interpretation and understanding of complex
biochemical pathways and mechanisms. The potential im-
pact of appropriate modeling tools parallels the historic role
of circuit simulation in electrical engineering. Genomic en-
gineers need simulations of complex biochemical networks
that can reduce the amount of experimentation needed to
understand changes in the network or to introduce delib-
erate changes that influence function. This level of control
will profoundly influence our ability to safely engineer new
crops, medicines, and genetic treatments.

Monozygotic identical twins arise from the same fertilized
egg and share exactly the same genetic code. Despite sharing
many physical characteristics, they are not truly identical.
For example, twins have similar but noticeably different fin-
gerprints. More generally, events will shape twins differently.
One twin may get a viral infection that causes an immune
system disorder like multiple sclerosis. The other twin may
eat carcinogens in grilled meat and develop cancer. Further-
more, every cell in a human shares exactly the same DNA,
but nerve cells and white blood cells have radically different
shapes and functions. Therefore, knowing the genetic code
tells us whatmighthappen, but it does not tell us whatwill
happen.

In principle, knowing every gene in an organism provides
the sequence of every protein that organism can produce. A
nerve cell and a white blood cell in a human are distinguished
because a different subset of genes is expressed, i.e., pro-
ducing RNA messages for protein synthesis. Expression pat-
terns also change with time and environment. When a nerve
cell receives a signal from another cell across the synapse,
there is a change in which genes are expressed. The changed
expression results in protein products that signal the next cell
in the brain’s neural network.

Genes are categorized by the function of the protein pro-
duced. Structural genes code for enzymes that catalyze a
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Table 3
DNA Sequencing Milestones and the Status of Many Publicly Funded Projects

reaction performing some function for the cell, like energy
production, environmental sensing, and cell defense. Reg-
ulatory genes code for proteins that bind to DNA in ways
that stimulate or suppress the expression of structural genes.
We define a pathway as a series of reactions that perform
some function for the cell. For example, the breaking down
of starch to produce energy is a pathway. An enzyme cat-
alyzes each step of the pathway. The amount of the enzyme
is controlled by the expression of its structural gene, which
is in turn controlled by the regulatory genes associated with
the pathway. A pathway does not have to be sequential. Re-
actions can occur simultaneously and there can be branching.
Pathways are generally self-regulated by feedback loops. A
pathway to digest a particular molecule typically turns itself
off when that molecule is no longer present. Some pathways
turn on if they sense a different external temperature or chem-
ical concentration. ConsiderYersinia pestis, the bacterium
that causes plague in humans. The virulence mechanism of
Y. pestisthat causes plague in humans is not activated when
Y. pestisbacteria are in fleas at 25C. When the same bac-

teria enter human hosts, the temperature increases to 37C
and the calcium concentration falls, the bacteria begin to pro-
duce virulence proteins [64]. Fig. 4 shows the interaction of
genes (DNA), message (RNA), proteins, function outcome,
and environment in a pathway. Pathways are not indepen-
dent; they often share enzymes and can stimulate or suppress
each other, and they are not necessarily confined to a single
cell.

Traditionally, a pathway is studied by a series of knock
out experiments. In each experiment, a single structural or
regulatory gene is mutated or removed from the genome. In
a simple example, if a pathway is responsible for digesting
fructose, its failure means the cell can no longer use fructose
as a source of energy and cannot grow if fed only fructose.
So, if a gene is mutated and the cell continues to survive,
the mutation did not affect its fructose metabolism pathway.
What biologists have found repeatedly is that different
combinations of genes may lead to different results. For ob-
vious evolutionary reasons, pathways often have redundant
branches. The loss of one gene may reduce efficiency or
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Fig. 10. Genes, messages, and proteins in a complex system with
multiple feedback loops.

have no effect at all. So while losing either gene A or gene
B might produce no observable changes, losing both genes
A and B would result in cell death. In the case of regulatory
genes, the situation is more complex. Experiments have
shown that there are regulatory genes where losing either
gene A or B may kill a cell, but losing both will not! So, to
fully understand a pathway requires testing every possible
case of gene expression under all environmental conditions.
Even a very small pathway contains about ten genes or 2
possible gene deletion experiments if every combination
of genes is deleted. Some human pathways result from the
interaction of hundreds of different genes, and the collective
cell contains hundreds of interconnected pathways.

Even given the whole genetic code, it is obvious that
traditional molecular biology would take centuries to tackle
even the 470 genes of the smallest known genome of any
free-living organism (the bacteriumMycoplasma genitalium,
[65]). Functional genomicsis a group of massively parallel,
high-throughput experimental and computational techniques
to study the function of every gene in an organism. This
includes measuring the mRNA concentration for every gene,
determining the function and structure of every protein, and
finally being able to model the interconnected regulatory
network of the whole cell. In the following sections, we
will discuss each component of the system in order. We will
focus on a few key technologies of particular interest to
engineers and computer scientists: DNA microarrays used
for expression profiling, computational protein structure
prediction, and mathematical models of pathway control.

Given that the smallest free-living organisms have about
500 genes and a human may have about 120 000 genes, what
we have outlined is already a great challenge. Unfortunately,
the picture of Fig. 4 is incomplete. It shows the transition
from genes to proteins by simple arrows. However, each
arrow actually represents a complex series of processes.
Human genes are usually not continuous segments of DNA
[11], [12]. RNA is spliced across several separate regions of
DNA to form message RNA. The mRNA is then transported
out of the nucleus to the ribosomes where protein is synthe-
sized. After the protein is synthesized, it is often modified
before it assumes its functional role. Regulation and feed-
back can occur at each step of the process going from DNA
to functional protein. As a result of the modifications from
regulation and feedback, some complex human genes can
produce hundreds of different proteins [66]. The genomic
approach necessarily depends on the DNA code that is now
accessible through high-throughput technologies. However,
researchers are just beginning to develop the tools required
to do similarly high-throughput study of the nongenome
interactions shown in Fig. 10.

V. GENE EXPRESSION: DNA MICROARRAYS

The variation of cell behavior with changing conditions
is a function of differential gene expression. Under a given
internal and external state, each gene is copied to mRNA at
a particular rate. Thus, in principle, measuring mRNA con-
centrations under a set of conditions provides a “snapshot”
of genetic activity. After the cell is subjected to an external
perturbation, the genetic activity changes as some pathways
are turned on, some are turned off, others are “tuned” up
or down, and many might not change at all. These changes
are dynamic, so snapshots after the initial perturbation show
continued changes as the first pathways produce interme-
diate products that stimulate the next wave of pathways. Fi-
nally, as shown in Fig. 10, the cell’s response can interact
with the environment and other cells. For example, during
intense exercise a human muscle cell runs out of oxygen.
The cell responds by activating the much less efficient path-
ways responsible for anaerobic respiration (energy produc-
tion without oxygen). Anaerobic respiration produces lactic
acid that cannot be broken down fast enough. The accumula-
tion of lactic acid stimulates a signaling pathway that sends
a chemical message to a nearby nerve cell, which then sends
a “pain” signal to the human brain. When exercise stops be-
cause of muscle pain, oxygen becomes available, aerobic res-
piration resumes, the lactic acid is removed, and the signaling
pathway turns off [67].

Obviously, measuring the expression of just a few genes is
not enough to characterize these complex changes. Several
technologies have been developed for the simultaneous
measurement of the concentration of thousands or more
different mRNA sequences. DNA chips and microarrays
separate a mixture of mRNA molecules based on knowing
their sequences. If the sequence is not known, a method
called Serial Analysis of Gene Expression (SAGE) can
identify mRNA transcript that did not come from a known
gene [68], [69]. Given the rapid acquisition of sequence
data discussed earlier, sequence knowledge is typically not
a problem. However, as described above, it is difficult to
identify what parts of the sequence actually code for genes.
In a typical DNA chip or microarray experiment [70]–[73],
the mRNA is isolated from a sample of cells in the state
of interest. The mRNA is then processed by a reverse
transcription reaction (5to 3 on a DNA strand), which
produces a complementary single strand of DNA (cDNA).
A fluorescent marker is attached to the cDNA. Now, the
cDNA target can bind with a single strand of DNA with the
complementary sequence. The binding of a single strand
of DNA with its complement is called hybridization. DNA
chips and arrays have surfaces covered by thousands of
spots, where each spot can contain billions of cDNA probes
corresponding to a particular known gene. The targets are
poured onto the probe array, the targets hybridize with the
complementary probes (if present in the array), and the
array is washed removing targets that did not hybridize. The
intensity of fluorescence at a spot then indicates how much
mRNA with the corresponding sequence was present in the

1960 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 12, DECEMBER 2000



Fig. 11. DNA microarray experiment to measure changes in gene
expression. Two samples are separately labeled and compete for
hybridization with complementary DNA on a glass slide.

original sample of cells. It is currently not possible to quan-
titatively determine the original mRNA concentration from
this fluorescence signal. Therefore, DNA array experiments
usually measure the competitive hybridization of mRNA
extracted from two samples. A different fluorescent label is
attached to the mRNA from each sample (e.g., red Cy5 and
green FITC). The ratio of fluorescence corresponding to
each sample then indicates the relative mRNA concentration
difference between the two samples. Fig. 11 outlines a
typical DNA microarray experiment.

DNA chips, developed by Affymetrix, use oligonucleotide
probes: 20 or 25 base subsequences unique to each gene.
These probes are synthesized on a 1.3 cm1.3 cm surface
using photolithographic techniques originated in semicon-
ductor manufacturing [74], [75]. The probes are synthesized
by a series of masks and chemical reactions that sequentially
extend the oligonucleotide probes exposed through the mask
by a specific base. In contrast to DNA chips where the probe
DNA is synthesized, microarrays use cDNA probes copied
from actual DNA and amplified using polymerase chain re-
action, also known as PCR [76]. Each probe can be a sec-
tion of or the entire gene (about 1000 bases is typical). Nylon
microarrays with radioactive probes have been used for an-
alyzing the simultaneous expression of almost allE. coli
genes [71]. Glass microarrays with optical fluorescence de-
tection, pioneered by Patrick Brown’s lab at Stanford [70],
are now more frequently used because of their greater sensi-
tivity. In general, microarrays are relatively easy to customize
and public protocols are available on the web [77]. A series of
reviews on DNA microarrays and chips are presented in [78].
One significant problem with all DNA array experiments is
that the hybridization is not perfect. Errors in hybridization
become particularly acute at 90% sequence similarity, which
is the case for many important regulatory genes. In these
cases, redundant probes specific to unique subsequences are
necessary to separately identify mRNA targets.

Reliable image analysis of microarrays is challenging.
Fig. 12 shows the raw pixel data from the red channel of a
microarray made in our lab. Data acquisition considerations
are similar to other optical imaging systems including

Fig. 12. Raw microarray image from one channel (unpublished
results courtesy A. Wyrobek and E. Garcia, LLNL).

integration time, optical cross talk of fluorescent labels, and
nonuniform illumination. Microarray images often have a
very low signal-to-noise ratio. There are generally many
more probes than targets, so the spots are only partially
fluorescent. Since the technology to print microarrays
cannot form consistent spots, exacta priori assignment
of spot regions is impossible. Thus, the spots have to be
recognized after the experiment from a weak and irregular
signal. Also, some targets will bind to the wrong spot, and
some will bind to the substrate and fail to be washed off.
Stray targets and other sources of fluorescence including the
substrate and coatings contribute to a significant nonlinear
background that must be removed in order to retrieve the
signal. Image analysis issues and solutions for typical
microarray experiments are discussed in [79].

A recent innovation that improves spot finding and back-
ground estimation and compensation is the inclusion of a
third dye, blue DAPI, in the microarray experiment. DAPI
is a DNA counterstain that binds to cDNA that failed to hy-
bridize with the target DNA. Thus, the blue channel reveals
the shape of each spot, making spot recognition simpler and
more accurate. The DAPI stain also helps estimate the back-
ground noise from DNA-surface binding. After the signals
for each sample are normalized for background and the rela-
tive intensity of the fluorescent dyes, the final outcome of
a microarray experiment for each probe spot is a ratio of
the mRNA concentration in one sample relative to the other.
Perhaps the most important obstacle for obtaining useful mi-
croarray data is quantifying and reducing the large error in-
herent in defining this ratio.

Fig. 13 shows the final processed image from Fig. 12.
Along with controls, it contains 85 genes fromYersinia
pestis. The virulence mechanisms ofY. pestisbecome active
at 37 C. In this picture, mRNA from cells at 25C are
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Fig. 13. Microarray data for an 85-geneY. pestismicroarray (unpublished results courtesy E. Garcia
and A. Wyrobek, LLNL).

labeled red and mRNA from cells at 37C are labeled green.
The more intense the color, the more mRNA from that
sample hybridized to the spot relative to the other sample.
Below the microarray data is a table of the gene names
corresponding to each spot. Cells colored green areY. pestis
genes expressed more at 37C than 25C, red are genes
expressed more at 25C. Cells colored blue are control spots
from mouse and human genes that are absent inY. pestis.

The challenge of visualizing microarray data is hinted at in
Fig. 13. In particular, a microarray containing every gene in
Y. pestiswould contain over 4300 different spots, making an
image like Fig. 13 impossible to interpret. In general, DNA
array experiments generate large, complex data sets. For any
one experiment, each gene has three measurements associ-
ated with it: the intensities of the two competing samples,
and the ratio of those intensities. Typically a series of assays
are taken over time. Thus, an array of 10 000 genes can be
thought of as a set of 10 000 3-D vectors that are changing
in time. There is a need for ways to store the data in conve-
niently accessible, public data warehouses, visualize exper-
imental results, and interpret the relative expression of the
genes to identify pathways and common regulatory mecha-
nisms.

To date, most microarray experiments have been published
in scientific journals with the expression data either included
or referenced at the URL of the authors’ website where the
data are posted [80]. There is no current standard for mi-

croarray data warehousing, so they are stored in a variety
of database formats or even large spreadsheet or text files.
Currently, there are different database frameworks under de-
velopment, one of many examples is ArrayDB developed at
the NHGRI [81], but there are many other public and pri-
vate efforts. In the very near future, as microarray experi-
ments become increasingly frequent, there will be a need for
a central public facility for submitting and accessing exper-
imental data sets, similar to the current NIH GenBank for
storing DNA sequences. Coupled to data warehousing, there
need to be creative ways for biologists to visualize experi-
mental results. Microarrays with thousands of grid cells can
be viewed as similar to multidimensional geographical infor-
mation and work is being done to extend tools from that area
to be useful in biology [82].

Even with better visualization and data storage, manually
processing tens of thousands of data points is very difficult.
Pattern recognition methods developed for imaging can be
extended to automatically classify gene expression data. The
goal is to divide genes into categories based on expression
levels. Classification by expression level can indicate which
genes are involved in the same pathway [83] and potentially
identify common regulatory mechanisms [84], [85]. The
problem is that a 50% increase in expression could be as
important to the biology of one gene as a 300% increase
in expression in another gene. Simple threshold-based
classification approaches erroneously classify these genes
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in separate categories. Furthermore, experimental error is
sufficiently high that differences in relative expression are
not very well quantified. Initial approaches to the problem
included unsupervised learning methods, hierarchical
clustering algorithms [86], [87], and self-organizing maps
[88]. Often the function of at least some genes is known
or suspected with a high degree of confidence. A support
vector machine (SVM) method has been presented that
takes advantage of this prior knowledge [89]. The challenge
facing algorithm developers is that even biologists cannot
currently distinguish biologically significant features and
clusters from artifacts. Progress depends on developing an
appropriate biological framework and translating it to a
mathematical model.

VI. STRUCTURE TOFUNCTION: STRUCTURAL GENOMICS

Differential expression data can provide an initial clue of
an unknown gene’s role in an organism. The specific func-
tion of a gene is executed by the protein for which it codes.
We now turn our attention to the next component of Fig. 10:
protein function. The typical first step upon obtaining the
DNA sequence of a suspected gene is to search for its se-
quence in a database of all publicly available genetic se-
quences like GenBank [10]. Approximate search algorithms
like BLAST [90]–[92] are used to find similar genes in pre-
viously sequenced organisms. If a known gene is found to be
“similar,” usually 25% or more identical, its corresponding
protein or function is assigned to the unknown gene. This is
called sequence annotation. Generally, over 40% of all sus-
pected genes in newly sequenced bacteria are not found in
the database [93]. Also, the annotation is not guaranteed until
independent supporting evidence is found. In fact, many of
the genes already in the database have unknown functions
themselves and are merely annotated as “hypothetical pro-
teins.” However, BLAST searches provide a useful first in-
dication of protein function and large numbers of genes can
be searched rapidly using parallel algorithms [94]. More def-
inite knowledge about protein structure and functions is re-
quired for reliable and comprehensive genome annotation.

Structural genomics is an effort to do high-throughput
identification of the 3-D protein structures corresponding
to every gene in the genome [93]. The effort combines
high-throughput experimental structure determination along
with computational structure prediction. Known protein
structures are stored in Protein Databank (PDB), a large
public database on the web similar to GenBank [95]. Struc-
tural biology is based on the paradigm that the 3-D structure
of a protein will define its function. Knowing the surface
chemical structure of an enzyme will suggest how the
substrates bind to the enzyme, and how the enzyme interacts
with other proteins. Fig. 14 shows an electrostatic potential
map of an antibody and the protein it binds, suggesting the
detailed structure of the chemical reaction that takes place
when the molecules bind [96].

There are two experimental methods for determining 3-D
protein structure: nuclear magnetic resonance (NMR) and
X-ray diffraction [97], [98]. NMR measures the coupling

Fig. 14. Electrostatic potential map of the solvent-accessible
surface of the 2E8 Fab antibody and the corresponding
receptor-binding region of the apoE protein: red is negative
potential, blue positive potential, and white neutral. The labels
indicate important amino acids (courtesy of B. Rupp, LLNL, and
K. Weisgraber, Gladstone Institutes).

of atoms across chemical bonds and short distances through
space under the influence of a magnetic field. A typical NMR
experiment with a 600 MHz field takes four–five weeks for
data collection and is limited to a protein with 120 amino
acids. Data analysis that once took months can now occur in a
single day using new algorithms [99]. New NMR instruments
with fields as high as 1 GHz and more sensitive techniques
allow faster analysis of larger proteins [100], but there is still
a size limit of a few hundred amino acids. X-ray crystallog-
raphy has no theoretical size limit. A protein crystal diffracts
X-rays, generating the Fourier transform of the atomic struc-
ture (electron density) of the protein. Since the phase is un-
known, techniques like replacing selected atoms by heavy
metals and using different wavelengths are required. Data
analysis used to be as complicated as with NMR, but recent
algorithms have made it much faster [101]. X-ray crystallog-
raphy is, however, sharply limited because it is often very dif-
ficult and sometimes impossible to obtain a high-quality pro-
tein crystal. Because of the limitations of both measurement
techniques, little structural data are known for the important
class of membrane proteins, about 30% of the total protein
in a cell. Improvements in NMR magnets and methods and
protein crystallization protocols are needed.

Even with the implementation of high-throughput tech-
niques, protein structure experiments are not keeping up with
the amount of sequence data. Currently, there are 10 675 pro-
teins with known 3-D structures from X-ray crystallography
and NMR experiments in the Protein Databank (PDB) [102].
This is a tiny fraction of the millions of gene sequences in
GenBank from 820 different species [103]. However, while
there is a great diversity of sequences, there are certain struc-
tural features that arise repeatedly in many different proteins.
The 10 000 protein structures in PDB share about 1800 folds,
or common structural features. It is estimated that fewer than
5000 folds occur naturally. Thus, with careful selection of ex-
perimental targets, perhaps only a few thousand more protein
structures are required so that every possible structural fea-
ture is in the database [92]. The current prediction is that by
2003, there will be 35 000 protein sequences in PDB [104]. In
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principle, if every fold that can be put together to build a pro-
tein is known, it should be possible to compare the sequence
of an unknown protein to the sequences corresponding to
these folds and predict its final structure. Comparative mod-
eling is a computational approach to doing this. In general,
structure is assigned by identifying sequence similarities (ho-
mologies) between the unknown protein and proteins with
known structures. There are several different approaches; a
good review is [105]. Generally, 30% amino acid sequence
similarity is thought to be sufficient for accurate structure
prediction.

A significant limitation of this approach is that alignment
is an unsolved problem. Algorithms like BLAST can align
sequences to compare them as a whole, but protein structure
requires aligning different parts of the protein sequence.
Fig. 15 is a simple illustration of how similar subsequences
can be located in different regions of the overall sequence,
and the subsequences themselves may not be completely
identical. In some cases, equally suitable alignments can be
found in which every amino acid is at a different position
in the predicted structure [106]. Furthermore, most experi-
mental structure data ignores the amino acids at the end of
the protein chain, limiting what is available in databases.

Moreover, many amino acids share the same basic chem-
ical properties, so exchanging them does not significantly
affect structure or function. Therefore two proteins with
very different sequences may in fact have the same structure.
There are hundreds of known hemoglobin protein sequences
in mammals, all of which share similar structure and the
same function. One approach is to consider the evolutionary
history of the organism in question and when its sequence
diverged from those in the databank. For example a human
gene will have a more similar sequence to a chimpanzee
gene than to a mouse gene, and will be much less similar
to an E. coli gene [107]. Another approach is to combine
the results of sequence homology and evolutionary history
along with the results of microarray experiments [108]. To
ensure that algorithms can be applied generally to unknown
sequences, algorithm performance is measured in biannual
Critical Assessment of Protein Structure Prediction (CASP)
experiments. Before each CASP meeting, the experimental
community provides a list of structures that are about
to be determined. The sequences are distributed to the
computational community, which analyzes them without
knowing the structure beforehand. Results from the last
CASP 3 meeting are contained in [109]. Overall, while
the accuracy of predictions is improving, computational
structure prediction is still limited to subsequences of an
unknown gene that have high sequence similarity.

The shortcomings of comparative modeling would be
avoided if it were possible to predict protein structureab
initio based on amino acid chemistry alone. Almost all
protein structure is the result of the interaction of amino
acids with water in cells [110]. Thus,ab initio simulation
of the folding of a 1000 amino acid protein requires a
10 000-body calculation of the interactions of the amino
acids and 9000 surrounding water molecules. Fundamental
quantum chemistry calculations are limited to studying

Fig. 15. A simple example of the structure alignment problem in
protein homology assessments.

the area around a single amino acid or DNA base [111].
Classical molecular dynamics treats amino acids and water
molecules as “billiard balls” and can model a subregion of
the protein, up to about 40–60 amino acids in length [112].
IBM has launched a new effort to produce a computer that
is capable of one petaflop, about a hundred times faster than
the most powerful supercomputers currently under develop-
ment [113]. However, even if technological obstacles can
be overcome, the computer algorithms currently used forab
initio structure prediction do not scale well and will need to
be redesigned.

VII. PROTEOMICS

The orderly sequence of Fig. 4 implies that knowing when
a gene is expressed means we know when its corresponding
protein is active in the cell. Fig. 10 suggests that because
of complex regulation, this is not the case. Experimental
studies in yeast [114] and the human liver [115] indicate that
protein concentration is not a linear function of mRNA tran-
script concentration. In many cases, even if gene A has more
transcript than gene B, protein A has a lower concentration
than protein B. This paradox is inevitable, since mRNA
and protein are very different molecules. The message is
intended to be short lived and the product durable, so RNA
decays far more rapidly than protein. Thus, a sharp burst
of mRNA transcription results in the long-term presence
of many proteins, continuing after the mRNA is gone.
Moreover, proteins can be modified after they are translated
from the mRNA template at the ribosome. Like genomics
is for genes, proteomics is the automated, high-throughput
simultaneous study of every protein in a cell [116]–[118].

Unlike genomics, there is no universal gene chip or
microarray for measuring the concentration of many pro-
teins simultaneously. There is no general tool for protein
production like PCR produces copies of DNA. Producing
multiple copies of a protein usually requires finding its
coding gene, inserting it in the bacteriumE. coli, growing
the cells, breaking the cells apart and harvesting the protein.
Harvesting natural protein from a cell is more difficult than
DNA and RNA, since as much of 10% of the cell protein can
not be extracted. The biggest problem lies with detecting
specific proteins. There is no general protein binding like
the complementary sequence binding of DNA and RNA. If
protein is known to bind to a specific antibody or to a DNA
molecule, it can be detected with an array of those specific
targets [119]. The only general way to separate different
proteins is with mass, since different amino acid sequences
correspond to different masses.

The most common tool in proteomics is two-dimensional
(2-D) gel electrophoresis [118]. The separations follow the
same principles as 1-D gel electrophoresis described earlier
in the paper under sequencing. The electric field is applied
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along one axis, separating the proteins based on how much
was present in the sample, and then the other axis, identifying
the protein species by mass. Finally, each 2-D spot on the
gel represents the concentration of a particular protein in the
sample. A public database of images and data from 2-D gel
electrophoresis experiments is available at [120]. Recently,
tandem mass spectrometry has also been extended to high-
throughput proteomics. Some enzymes digest a protein and
break it up into subunits in highly predictable, well-known
ways. These fragments can then be analyzed with a mass
spectrometer, generating a fingerprint for the protein. This
fingerprint can then be searched against a database of known
proteins, and the protein can then be identified and its con-
centration in the sample measured. A review of the current
state of automation in proteomics can be found in [118].

VIII. G ENETIC REGULATION: BIOLOGICAL BASICS

We have now outlined approaches to measuring gene and
protein expression and identifying protein structure and func-
tion. As shown in Fig. 10, it is impossible to study genes and
proteins in isolation from each other. Therefore, it is neces-
sary to determine and model the regulation of a pathway to
fully understand it. As we discussed earlier, a pathway of just
ten genes has 2states of on/off genetic activity, more if one
includes rates of genetic activity. The effect of changing the
activity of a gene can be studied in simulation by using a
pathway model. If successful, this simulation would obviate
the need for an impractical number of biochemical experi-
ments. Ultimately, it will be possible to use pathway simu-
lation to design novel control systems in organisms to pro-
duce useful proteins in a regulated fashion. The hardware
tools for implementing an artificial genetic control system
are emerging. For example, a genetic “switch” was recently
demonstrated inE. coli bacteria [121]. One of the biggest
obstacles to gene therapy is that it is almost impossible to
regulate a dose [122]. The patient has to be given a large
quantity of genes through virus vectors, with a high proba-
bility of negative immune response and possible death. Thus,
the ability to implement stable regulatory pathways for gene
expression is critical for the success of one of the Human
Genome Project’s most important promises. In this section,
we will describe a simple example of an actual biological
pathway to show which reactions have to be modeled in a
pathway simulation.

Regulation in biological pathways is often described
using theoperon, a model proposed by Jacob and Monod in
1960 [123]. The example they first described is the lactose
pathway ofE. coli (thelac operon). Fig. 16(a) shows how the
operon is arranged on theE. coli chromosome [11]. Lactose
metabolism requires enzymes coded by the geneslacZ and
lacY. For transcription of mRNA to occur, RNA polymerase
must bind to a shortpromoter sequence. In Fig. 16 the
promoters are labeled P1 and P2. If the RNA polymerase
binds to P2, the DNA sequence of the lacZ, lacY, and lacA
structural genes will be transcribed into mRNA molecules
that are then translated on the ribosome to form proteins.

(a)

(b)

(c)

Fig. 16. Organization of thelac operon inE. coli. (a) Promoters
P1 and P2 and geneslacZ and lacY code for lactose metabolism
enzymes. (b) The repressor protein coded bylacI, binds to P2
preventinglacZ, lacYandlacA transcription. (c) Lactose binds with
lacI, allowing RNA polymerase to bind to P2 and transcribe the
structural genes.

The enzymes will break down lactose and generate energy
for the cell.

If RNA polymerase binds to P1, the DNA sequence of the
lacI regulatory gene will be transcribed to an mRNA mole-
cule, which is then translated to form its protein. The gene
lacI produces a repressor protein. The protein binds to P2,
as shown in Fig. 16(b), resulting in the RNA polymerase
being blocked from binding P2 and starting transcription of
the structural genes, including lacZ and lacY. The binding
of RNA polymerase to P1 has blocked the transcription of
the lactose digestive enzymes. Fig. 16(b) shows the equilib-
rium case. In fact, the repressor protein is rapidly binding
and unbinding the DNA. The binding of RNA polymerase
with DNA has a much lower rate constant, so it cannot com-
pete with the repressor and cannot bind to the promoter. But,
if the repressor-DNA rate constant decreases, the binding of
RNA polymerase to DNA will become favored. The lacI re-
pressor protein also binds to lactose with an even higher rate
constant than with DNA. In the presence of lactose, the re-
pressor preferentially binds with it and leaves the DNA free.
This leaves P2 open for binding with RNA polymerase, as
shown in Fig. 16(c), and allows the production of lactose di-
gestive enzymes that break down lactose for energy. When
all of the lactose is exhausted, the lacI repressor protein will
be free to bind to P2 and suppress further enzyme produc-
tion, and the system will return to the state of Fig. 16(b).

The lac operon represents a simple negative feedback
system familiar to electrical engineers. Positive feedback
loops also exist for some operons, whereby a protein binding
to DNA promotes the production of downstream genes. An
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example of this is theara operon for arabidose regulation
[11]. In these cases, the protein might change the 3-D struc-
ture of the DNA, making it easier for RNA polymerase to
attach to the promoter. In general, promotion and repression
occurs through a variety of DNA-protein interactions.

Soon after the operon idea was introduced, theoretical bi-
ologists tried to model it as a Boolean system: a gene was
turned on (1) or off (0) by the promoter or repressor pro-
tein [112]. This led to important discoveries about the na-
ture of network dynamics, autocatalytic sets, and how order
emerges from the interconnected reactions of a cell [114], but
ultimately failed to model the actual behavior of the biolog-
ical system of interest [116]. However, a full treatment of a
complicated biological system is still difficult, so a Boolean
representation of the reactions is still used when the pathway
size is large [117]. Modern simulations incorporate as much
detail as possible: the transcription of DNA to mRNA, the
translation of mRNA to protein at the ribosome, binding of
the RNA polymerase to the DNA, promoter and repressor ki-
netics, and the decay of mRNA and protein molecules.

IX. STOCHASTIC PATHWAY SIMULATION

Until recently, most modeling work consisted of repre-
senting the reactions in a pathway by coupled chemical ki-
netic ordinary differential equations (ODEs), with rate con-
stants derived from experimental data. While this method
is used extensively with quantitative success in industry for
bulk enzyme production, it has only qualitatively reproduced
pathway behavior in biological systems [128], [129]. Suc-
cess appears to depend on the accuracy of the experimental
parameters. These parameters come from traditional single-
molecule biochemical experiments, since most of the high-
throughput methods we described in previous sections are
not reliably quantitative. However, microarray data are now
being used to validate models, and to suggest the genes that
should be included in the simulation.

These ODE models can successfully predict the average
behavior of large numbers of cells. They fail, however, to
simulate basic biological features that arise from stochastic
effects. Recent studies have shown that biological systems
are very noisy, and that much of cell behavior occurs because
of that noise [130]–[132]. In the case of cancer, random ef-
fects with a low individual probability accumulate, causing
dramatic changes. Moreover, a continuous representation of
protein concentration fails for a single cell. AnE. coli cell is
so small that one protein molecule is equivalent to a 1-nM
concentration. In some cases, fewer than ten copies of a par-
ticular regulatory protein are produced. And most impor-
tantly, there is just one molecule of DNA in a cell that can
bind with proteins and produce mRNA transcripts. There-
fore, any complete pathway model must necessarily be sto-
chastic and discrete. McAdams and Arkin [133] presented a
review of simulation for bacterial cells, including an exten-
sive discussion of stochastic techniques.

A typical pathway can include thousands of proteins, so
the state space is too large for an exact solution of the sto-
chastic process of coupled reactions. Gillespie [134], [135]

proposed a Monte Carlo method to exactly simulate the sto-
chastic time evolution of a reaction system. The probability
of each reaction occurring is a function of its rate constant
from experimental kinetics data and the number of available
reactants. At each point in time, there exists a joint proba-
bility distribution function for both the reaction and the time
at which it would occur. The simulation generates an exactly
correct random trajectory through the state space. Multiple
simulations can be used to estimate the expected variance of
the system as a function of the number of molecules partici-
pating in the pathway.

Arkin et al. [136] recently applied the Gillespie method
to a fully stochastic model ofE. coli infected by the
phage virus. The operon model can be applied to virus
genes that determine whether the cell is in the lysogeny
or lysis pathway. Lysogeny is the state where the virus is
reproducing by using the cell’s machinery and lysis is the
explosion of the cell and release of virus. The simulation
incorporated the transcription and translation of five genes,
as well as protein-protein and DNA-protein reactions of four
regulatory proteins and two proteases (enzymes that destroy
proteins). It represented a total of 32 chemical reactions.
Some of these 32 reactions were compound transcription
and translation reactions, consisting of hundreds of reaction
events for the processing of each base. Implementing the
simulation required parallel array supercomputers. Algo-
rithmic improvements can reduce the number of required
random numbers and reduce the time for state updates in the
case where reactions are only coupled to a few others [137].
Part of the strategy is to group sequential, independent
reactions into a single step. For example, the hundreds of
transcription and translation reactions for a gene to produce
one protein would be combined into a single random step by
assuming that the reaction of each base is independent.

There are some important deficiencies with including only
coupled volume chemical reactions. For example, the effects
of diffusion and transport of the proteins through the cell are
neglected. Also, many important reactions occur on mem-
brane surfaces or other cellular structures. Fortunately, Gille-
spie’s method has already been applied to surface chem-
istry [138] and may be adapted for membrane simulations.
A more significant drawback of stochastic simulation is that
the number of time steps that must be calculated grows at
least and on average with the total number
of molecules.

X. REALITY CHECK: PATHWAY SIMULATION IN THE REAL

WORLD

Operons are the most common kind of regulation in
prokaryotic organisms (bacteria). However operons are
the least complex kind of biological pathway regula-
tion. Operons are found infrequently in the well studied
and sequenced eukaryotic organismsS. cerevisiae(the
single-celled baker’s yeast) andC. elegans(the tiny ne-
matode) [11]. As shown in Fig. 10, regulation occurs at
every step of gene expression: the production of mRNA, the
transport of mRNA, the translation of mRNA to protein, and
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posttranslational protein modification. This adds consider-
ably to the number of reactions that must be included if we
want to model human systems using the simulations we just
described.

The basic reason for the difference is that bacteria are
prokaryotes: they have no nuclei isolating the DNA from the
other components of the cell. In fact, the chromosome is usu-
ally attached to the cell wall. Furthermore, the prokaryotic
chromosome is compact and genes are almost always con-
tinuous sequences. In prokaryotic gene transcription, as soon
as the mRNA is produced it is translated on the ribosomes
into proteins. The cells are compact, so molecules do not
have far to go. Plants, fungi, and animals areeukaryotes: in
their cells, DNA is contained entirely within the nucleus and
reactions are compartmentalized. Also, genes are scattered
throughout multiple chromosomes, and individual genes are
typically coded in segments separated by noncoded regions.
Promoter sequences also have complex structure, and there
are additional “enhancer” sequences that control the rate of
transcription. Promotion and repression requires a complex
of different proteins called transcription factors working to-
gether. This adds enormous complexity. For example,tran-
scription factorsare commonly activated byphosphoryla-
tion (adding a phosphorus ion) at various sites in the pro-
tein. There are usually multiple phosphorylation sites on a
single protein, and it is only necessary for a specific subset
of these sites to be phosphorylated for the transcription factor
to be active and the gene to be expressed. Thus, forsites,
the state space includes 2combinations: the activation of a
site in one combination does not imply that it must be active
in all combinations [139]. This presents a daunting task for
modeling. For example, an important transcription factor in
cancer research has 16 phosphorylation sites or 65 636 pos-
sible states.

Furthermore, after transcription, the pieces of mRNA have
to be spliced together, the mRNA has to be stabilized for its
journey through the nucleus, and it has to be transported to a
ribosome. Regulation occurs by controlling mRNA stability,
its ability to leave the nucleus, speed of binding to the ribo-
some, and speed of release from the ribosome [140]. After a
protein is synthesized, it usually undergoes modification and
has to be transported to a particular site in the cell. An anal-
ysis of a sea urchin developmental gene provides an example
for the challenge of modeling regulation of just a single eu-
karyotic gene [141].

No matter what the complexity of the system, simula-
tion requires experimental data. Most genomic data has
been static: sequence and structure. Expression profiling
with DNA chips and microarrays is a shift to dynamic
information, but as we have discussed, these experiments
are still qualitative. Expression profiling can help validate
models, but cannot build them from scratch. Much of the
data that simulation requires will come from enzymology
experiments which can accurately measure reaction kinetics.
New advances in molecular imaging allow observations of
single molecule interactionsin vivo that will accelerate the
collection of reaction kinetic information [142]. Further
progress in obtaining quantifiable data is needed, since

without accurate pathway simulation, millions of mutation
experiments will have to be conducted to analyze the data
gathered in the Human Genome Project.

XI. SUMMARY

Electrical and computer engineering has had an impor-
tant role in completing the DNA sequence for the Human
Genome Project. Laboratory automation and computer tools
and systems have contributed to the Project’s success. As
biologists move forward to challenges in discerning genetic
variation and function, the technologies and tools from elec-
trical and computer engineering are increasingly important.
Tools for larger databases, sharing and mining diverse data
sets, digital image processing and pattern recognition, com-
plex system simulation, and new measurement technologies
are all needed for the challenges of functional and structural
genomics. In the end, the data will profoundly change how
we view the living world and ourselves.
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